APPLICATION OF K-MEANS CLUSTERING ALGORITHM ON INTERNET VOUCHER SALES CASE STUDY OF ABC COUNTER
Keywords:
Clustering, K-Means, Internet VoucherAbstract
Rapid technological advances will bring changes to aspects of human life, one of which is how to communicate. With the discovery of cell phones, it is easier for humans to communicate remotely, one of which is WhatsApp. If someone wants to use WhatsApp, internet access is needed so that the sales of internet vouchers are increasing. Data mining is the process of processing data in order to obtain new information, clustering is chosen because it aims to create clusters from existing data. This study aims to cluster internet vouchers so that counter owners can make stock vouchers more precisely. The results of this study yielded the highest value for cluster C1 35,000 while the lowest value for C2 was 43,000 with a total of 99 data with a percentage of 95.19% while cluster C2 consisted of 5 data with a percentage of 4.81%. the conclusion is that the most purchased nominal vouchers are under 40,000. therefore the counter owner can keep more stock for a nominal value below 40,000
References
N. Huda, “Analisis Kinerja Website Pt
Pln (Persero) Menggunakan Metode
Pieces,” Sistemasi, vol. 8, no. 1, pp. 78–
, 2019, doi: DOI:
https://doi.org/10.32520/stmsi.v8i1.
P. Fakhriyah, “Pengaruh Layanan
Transportasi Online (Gojek) Terhadap
Perluasan Lapangan Kerja Bagi
Masyarakat Di Kota Cimahi,” Comm-Edu
(Community Educ. Journal), vol. 3, no. 1,
p. 34, 2020, doi: 10.22460/commedu.v3i1.3719.
Nawassyarif, M. Julkarnain, and K. Rizki
Ananda, “Sistem Informasi Pengolahan
Data Ternak Unit Pelaksana Teknis
Produksi Dan Kesehatan Hewan Berbasis
Web,” J. Inform. Teknol. dan Sains, vol.
, no. 1, pp. 32–39, 2020, doi:
51401/jinteks.v2i1.556.
A. Syafnur, “Analisis Dengan Metode
Klasifikasi Menggunakan Decission Tree
Untuk Memprediksi Penentuan Resiko
kredit Bank,” Jurteksi, vol. 4, no. 1, pp.
–106, 2017, doi:
33330/jurteksi.v4i1.30.
N. Agustina and P. Prihandoko,
“Perbandingan Algoritma K-Means
dengan Fuzzy C-Means Untuk Clustering
Tingkat Kedisiplinan Kinerja Karyawan,”
J. RESTI (Rekayasa Sist. dan Teknol.
Informasi), vol. 2, no. 3, pp. 621–626,
, doi: 10.29207/resti.v2i3.492.
Yoga Religia, Agung Nugroho, and
Wahyu Hadikristanto, “Klasifikasi
Analisis Perbandingan Algoritma
Optimasi pada Random Forest untuk
Klasifikasi Data Bank Marketing,” J.
RESTI (Rekayasa Sist. dan Teknol.
Informasi), vol. 5, no. 1, pp. 187–192,
, doi: 10.29207/resti.v5i1.2813.
T. Syahputra, J. Halim, and E. P. Sintho,
“Penerapan Data Mining Dalam
Menentukan Pilihan Jurusan Bidang Studi
SMA Menggunakan Metode,” Penerapan
Data Min. dalam Menentukan Pilihan
Jur. di Bid. Stud. SMA menggunakan
Metod. Clust. Dengan Tek. Single Link.
JURTEKSI, vol. IV, no. 2, pp. 1–4, 2018.
G. A. Marcoulides, Discovering
Knowledge in Data: an Introduction to
Data Mining, vol. 100, no. 472. 2005. doi:
1198/jasa.2005.s61.
R. A. raffaidy Wiguna and A. I. Rifai,
“Analisis Text Clustering Masyarakat Di
Twitter Mengenai Omnibus Law
Menggunakan Orange Data Mining,” J.
Inf. Syst. Informatics, vol. 3, no. 1, pp. 1–
, 2021, doi:
33557/journalisi.v3i1.78.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mohammad Sabar Jamil, Nugraha Yudhasyah, Hilman Mutaqin, Moh. Milki I. M.

This work is licensed under a Creative Commons Attribution 4.0 International License.
