APPLICATION OF K-MEANS CLUSTERING ALGORITHM ON INTERNET VOUCHER SALES CASE STUDY OF ABC COUNTER

Authors

  • Mohammad Sabar Jamil Program Studi Informatika Sekolah Tinggi Teknologi Cipasung
  • Nugraha Yudhasyah Program Studi Informatika Sekolah Tinggi Teknologi Cipasung
  • Hilman Mutaqin Program Studi Sistem Informasi STMIK LIKMI Bandung https://orcid.org/0000-0003-3037-1374
  • Moh. Milki I. M. Program Studi Informatika Sekolah Tinggi Teknologi Cipasung

Keywords:

Clustering, K-Means, Internet Voucher

Abstract

Rapid technological advances will bring changes to aspects of human life, one of which is how to communicate. With the discovery of cell phones, it is easier for humans to communicate remotely, one of which is WhatsApp. If someone wants to use WhatsApp, internet access is needed so that the sales of internet vouchers are increasing. Data mining is the process of processing data in order to obtain new information, clustering is chosen because it aims to create clusters from existing data. This study aims to cluster internet vouchers so that counter owners can make stock vouchers more precisely. The results of this study yielded the highest value for cluster C1 35,000 while the lowest value for C2 was 43,000 with a total of 99 data with a percentage of 95.19% while cluster C2 consisted of 5 data with a percentage of 4.81%. the conclusion is that the most purchased nominal vouchers are under 40,000. therefore the counter owner can keep more stock for a nominal value below 40,000

References

N. Huda, “Analisis Kinerja Website Pt

Pln (Persero) Menggunakan Metode

Pieces,” Sistemasi, vol. 8, no. 1, pp. 78–

, 2019, doi: DOI:

https://doi.org/10.32520/stmsi.v8i1.

P. Fakhriyah, “Pengaruh Layanan

Transportasi Online (Gojek) Terhadap

Perluasan Lapangan Kerja Bagi

Masyarakat Di Kota Cimahi,” Comm-Edu

(Community Educ. Journal), vol. 3, no. 1,

p. 34, 2020, doi: 10.22460/commedu.v3i1.3719.

Nawassyarif, M. Julkarnain, and K. Rizki

Ananda, “Sistem Informasi Pengolahan

Data Ternak Unit Pelaksana Teknis

Produksi Dan Kesehatan Hewan Berbasis

Web,” J. Inform. Teknol. dan Sains, vol.

, no. 1, pp. 32–39, 2020, doi:

51401/jinteks.v2i1.556.

A. Syafnur, “Analisis Dengan Metode

Klasifikasi Menggunakan Decission Tree

Untuk Memprediksi Penentuan Resiko

kredit Bank,” Jurteksi, vol. 4, no. 1, pp.

–106, 2017, doi:

33330/jurteksi.v4i1.30.

N. Agustina and P. Prihandoko,

“Perbandingan Algoritma K-Means

dengan Fuzzy C-Means Untuk Clustering

Tingkat Kedisiplinan Kinerja Karyawan,”

J. RESTI (Rekayasa Sist. dan Teknol.

Informasi), vol. 2, no. 3, pp. 621–626,

, doi: 10.29207/resti.v2i3.492.

Yoga Religia, Agung Nugroho, and

Wahyu Hadikristanto, “Klasifikasi

Analisis Perbandingan Algoritma

Optimasi pada Random Forest untuk

Klasifikasi Data Bank Marketing,” J.

RESTI (Rekayasa Sist. dan Teknol.

Informasi), vol. 5, no. 1, pp. 187–192,

, doi: 10.29207/resti.v5i1.2813.

T. Syahputra, J. Halim, and E. P. Sintho,

“Penerapan Data Mining Dalam

Menentukan Pilihan Jurusan Bidang Studi

SMA Menggunakan Metode,” Penerapan

Data Min. dalam Menentukan Pilihan

Jur. di Bid. Stud. SMA menggunakan

Metod. Clust. Dengan Tek. Single Link.

JURTEKSI, vol. IV, no. 2, pp. 1–4, 2018.

G. A. Marcoulides, Discovering

Knowledge in Data: an Introduction to

Data Mining, vol. 100, no. 472. 2005. doi:

1198/jasa.2005.s61.

R. A. raffaidy Wiguna and A. I. Rifai,

“Analisis Text Clustering Masyarakat Di

Twitter Mengenai Omnibus Law

Menggunakan Orange Data Mining,” J.

Inf. Syst. Informatics, vol. 3, no. 1, pp. 1–

, 2021, doi:

33557/journalisi.v3i1.78.

Published

06-09-2022

How to Cite

Sabar Jamil, M. ., Yudhasyah, N., Mutaqin, H., & Milki I. M., M. (2022). APPLICATION OF K-MEANS CLUSTERING ALGORITHM ON INTERNET VOUCHER SALES CASE STUDY OF ABC COUNTER. Cipasung Techno Pesantren: Scientific Journal, 16(2), 63–69. Retrieved from https://journal.sttcipasung.ac.id/index.php/CTP/article/view/21